Towards Simulated System Architectures with Σ

Prof. Antoine B. Rauzy

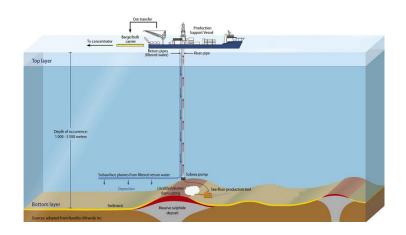
Norwegian University of Science and Technology Trondheim, Norway

Systemic IntelligenceParis, France

Presentation

What is Σ ?

 Σ (pronounce Sigma) is a **modeling language** dedicated to Model-Based Systems Engineering (MBSE)


Why Σ ?

 Σ aims at taking full advantage of **computerized simulations** to support **decision making**.

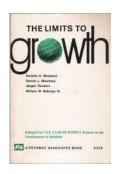
Typical (and First) Application: Subsea Mining

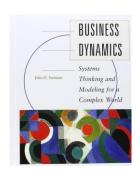
Collecting polymetallic nodes on the seabed of the Norwegian continual shelf.

A holistic problem:

- Technical choices
- Field data
- Economical data
- Regulations

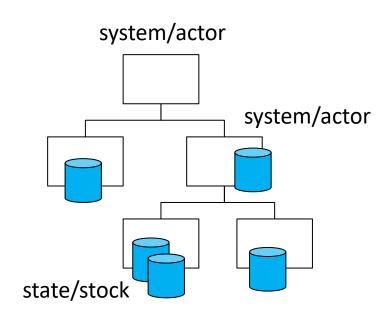
Key performance indicators to be assessed in the different scenarios:


- Annual production of ore
- Energy consumption / economical viability
- Waste disposal
- Safety


Modeling Frameworks Landscape

MBSE graphical notations

Model-based reliability analyses



Multiphysics simulation

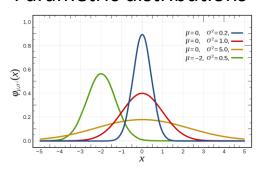
The Σ Modeling Framework

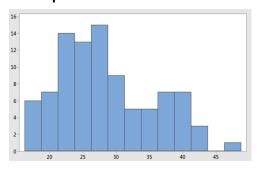
 Σ ontology: Systems + Stocks + Activities

Activities

- trigger
- action at start
- action at completion
- duration

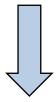
Formal Language


```
system SeaMiningWorld.SeaMiningSystem.MiningSupportVessel
     // Location
     parameter float distanceToHarbor(unit = "NM") = 400;
     // Cargo
     parameter float storageCapacity(unit = "t") = 39000;
     float totalStock(init = 0, unit = "t");
     float rawOreStock(init = 0, unit = "t");
     float dewateredOreStock(init = 0, unit = "t");
     float waterStock(init = 0, unit = "t");
     observer Cargo(unit = "t") = totalStock;
     indicator CargoIndicator(mean = true, standardDeviation = true) = mean(Cargo);
     // Bulk vessels
     parameter float bulkVesselDemandThreshold(unit = "t") = 1000;
     int bulkVesselTurn(init = 1);
end
activity SeaMiningWorld.SeaMiningSystem.MiningSupportVessel.DemandBulkVessel1
     trigger:
           return dewateredOreStock>=bulkVesselDemandThreshold and bulkVesselTurn==1
                and not main.SeaMiningSystem.BulkVessel1.demandedOnSite;
     start:
          bulkVesselTurn = 0;
     completion:
          main.SeaMiningSystem.BulkVessel1.demandedOnSite = true;
     duration:
          return 0;
end
```



Embedding Data into Models

Results and durations of activities can be described by means of (probability) distributions

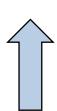
Parametric distributions



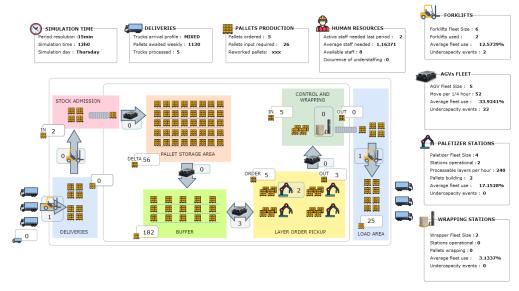
Empirical distributions

- On-line calibration of models
- Management of uncertainties
- ...

Full-Fledged Object-Oriented Language

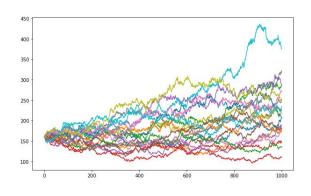

- Top-down model design
- System level
- Reuse of modeling patterns
- Prototype-orientation

- Bottom-up model design
- Component level
- Reuse of modeling components
 Object-orientation



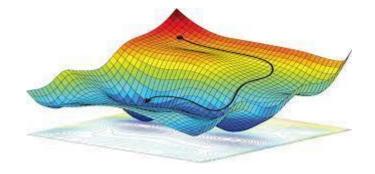
Multiphysics simulation

Interactive Simulation


- Σ models can be simulated graphically
- Video player metaphor
- Graphical animations described in WIDL

Automated Warehouse

Stochastic Simulation and Proof Scripts



Monte-Carlo simulation

Assessment of key performance indicators

Proof script

- Optimization
- What-if scenarios

Conclusion

What is Σ ?

 Σ is a **formal**, **object-oriented**, **modeling language** dedicated to MBSE.

 Σ makes it possible to embed seamlessly data into models

Why Σ ?

 Σ aims at taking full advantage of **computerized simulations** to support **decision making**.

- Interactive simulations with dedicated graphical interfaces
- Stochastic simulations to assess key performance indicators
- Proof scripts for on-line calibration of models and optimization

Next generation of MBSE: Systemic Digital Twins

