Systemic Digital Twins for Optimizing Industrial Strategy & Operations: a Case Study

Daniel KROB, INCOSE Fellow

October 2023

Funded by the European Union

Systemic Intelligence in a nutshell

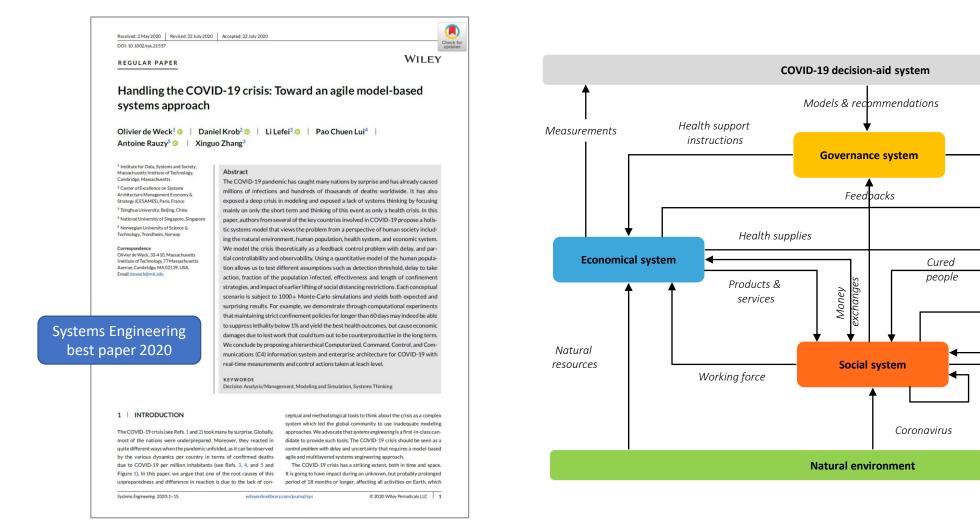
Our strong scientific, technologic & business fundamentals

Our systemic digital twin solution: WorldLab™

Our current customers as early adopters of our systemic digital twin solution

SYDITIL is led by a French startup, Systemic Intelligence, which develops the systemic digital twin solution, WorldLab[™], based on a strong scientific, technologic & business background that helped us to obtain our first customers during the last 12 months.

Systemic Intelligence – The scientific pillars of systemic digital twins


Our systemic digital twins rely on three main innovative pillars: 1) the CESAM system architecting method used in the design phase, 2) the new systemic specification language Σ[™] used in the beginning of the development phase, 3) the WorldLab[™] platform that supports the end of the development phase and the use phase.

Systemic Intelligence – The starting point of our journey

A seminal paper where we proposed a systemic digital twin approach for modeling the world in the covid-19 crisis context

Health policy

instructions

Infected

people

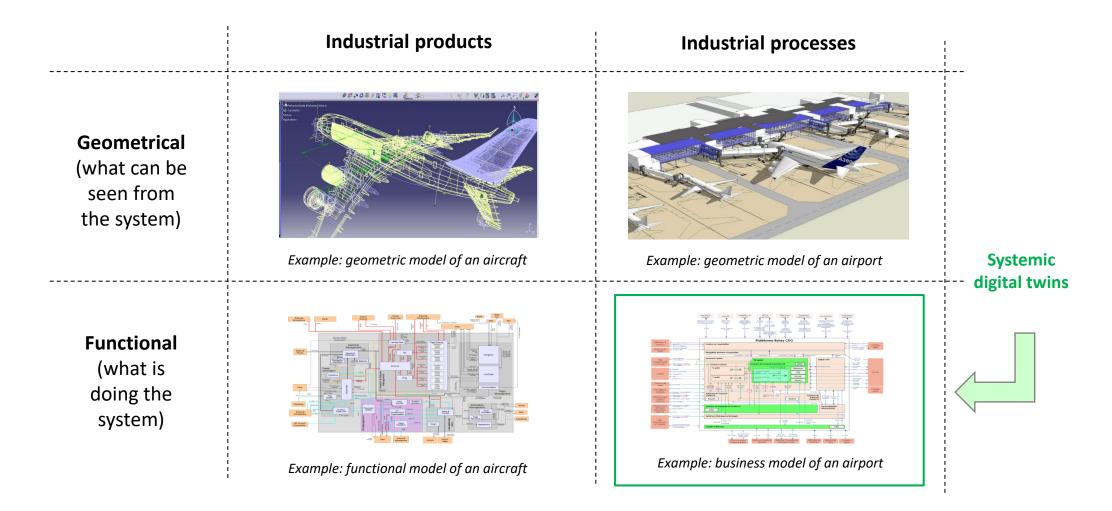
Coronavirus

Measurements

Health system

Dead people

4 Systemic digital twins for mastering complex industrial operations & strategy


Agenda

- 1. Systemic Digital Twins: an Introduction
- 2. An Illustrative Case Study: Dunkirk's port

5 Systemic digital twins for mastering complex industrial operations & strategy

Our point of view: a functional paradigm focused on industrial processes

Systemic digital twins simulate industrial processes associated with complex industrial systems based on a systemic vision

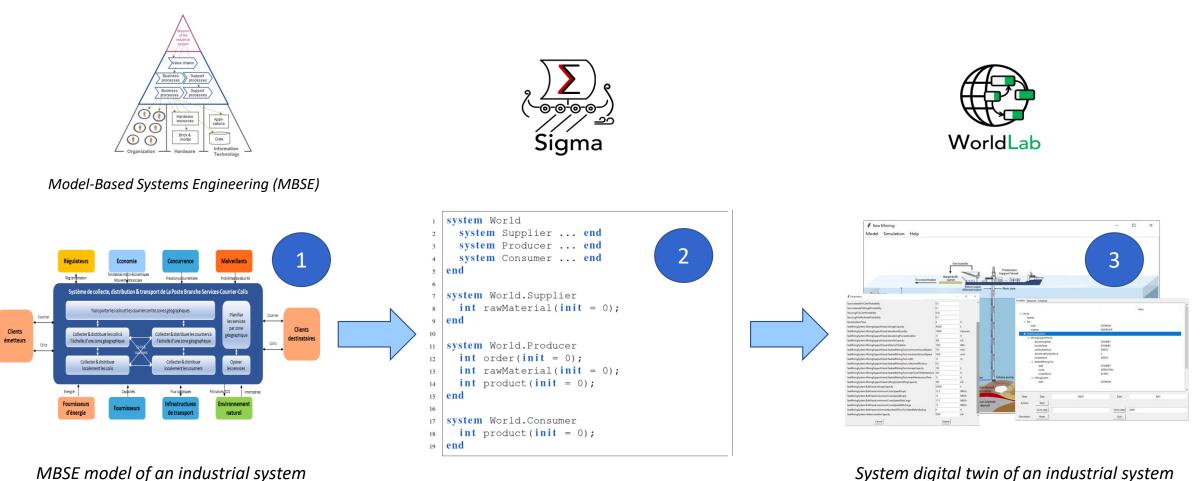
6 Systemic digital twins for mastering complex industrial operations & strategy

The challenge: how to be sure to take the right decisions?

- What is the optimal global architecture for an industrial system?
- What is the optimal design for a new industrial facility?
- What is the best way to manage an industrial process?
- What is the optimal way to manage an industrial ramp-up?
- What is the optimal industrial maintenance strategy to follow?

Examples of strategic industrial decisions

- How to optimize my industrial lead time during operations?
- How to minimize non quality during industrial operations?
- How to optimally reconfigure my industrial production?
- How to minimize energy & wastes during industrial operations?
- How to decrease environmental footprint during industrial operations?


Examples of operational & tactical industrial decisions

Being able to take the right strategic & operational decisions is key in order to optimize industrial operations

7 Systemic digital twins for mastering complex industrial operations & strategy

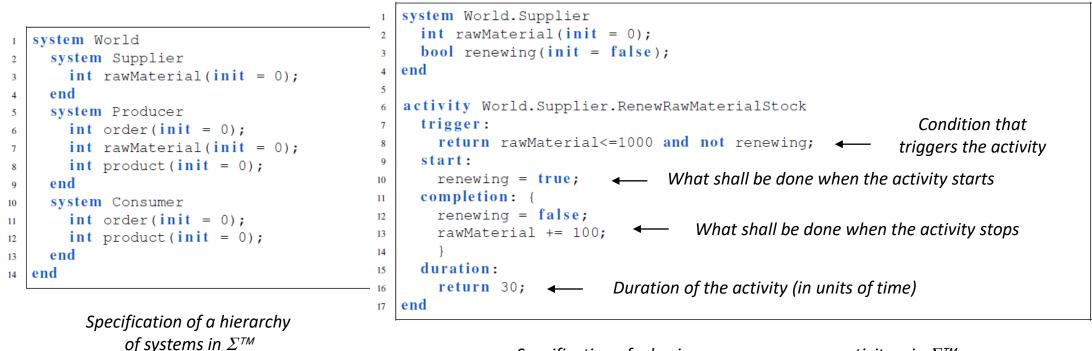
Our approach: from model-based systems engineering to simulation

 Σ^{TM} model of an industrial system

The methodological framework for the development of a systemic digital twin with Σ^{TM} and WorldLab TM

Focus: the different types of modeling languages for specifying systems

Modeling language type	Syntax used by the modeling language	Examples	Features	Fundamentals	Level of rigor	Simulation capability
Formal	Formal specification language	<pre>i system World ; system Suppler int rawMaterial(init = 0); end ; system Producer int order(init = 0); int rawMaterial(init = 0); int product(init = 0); end system Consumer int order(init = 0); int product(init = 0); end end </pre>	Formal semantics leading to compiling, simulation & strong interoperability	Mathematics	Strong	Possible
Pseudo-formal	Graphical language	Antibiotic Det Det Antibiotic Organization Image: Constraining the second	No formal semantics leading to structural interoperability & simulation issues	Meta-model	Weak	Difficult since it requires a simulation semantics
Unformal	Natural language	<section-header><section-header><section-header><text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><section-header></section-header></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></text></section-header></section-header></section-header>	No semantics at all leading to many possible meanings	Practice	Poor	Impossible


One shall first point out that the ∑[™] modeling language on which relies our systemic digital twin approach is a **formal language** dedicated to **industrial system specification** which naturally supports **simulation**

9 Systemic digital twins for mastering complex industrial operations & strategy

Last, but not least: the Σ^{TM} modeling language

Specification of a business process – as an activity – in Σ^{TM}

The ∑[™] modeling language allows therefore naturally to specify the hierarchical structure and the behaviors, that is to say the business processes, of a given industrial system, but also the end-user interface with the business indicators & alerts that shall be computed and shown to the business users during the use of a systemic digital twin.

10 Systemic digital twins for mastering complex industrial operations & strategy

Agenda

- 1. Systemic Digital Twins: an Introduction
- 2. An Illustrative Case Study: Dunkirk's port

11 | Systemic digital twins for mastering complex industrial operations & strategy

Motivation of the case study

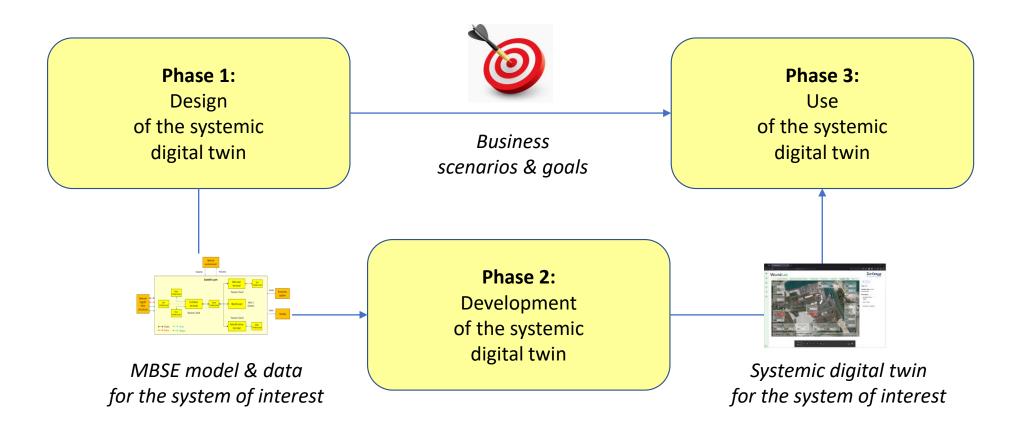
Coal traffic

Container traffic

Due to environmental regulations, the old coal traffic is being replaced by a new container traffic, which has a huge impact on the port infrastructures since coal and containers require totally different logistics. There is therefore a strong need to secure the corresponding investments that have to be done by the general direction of the port.

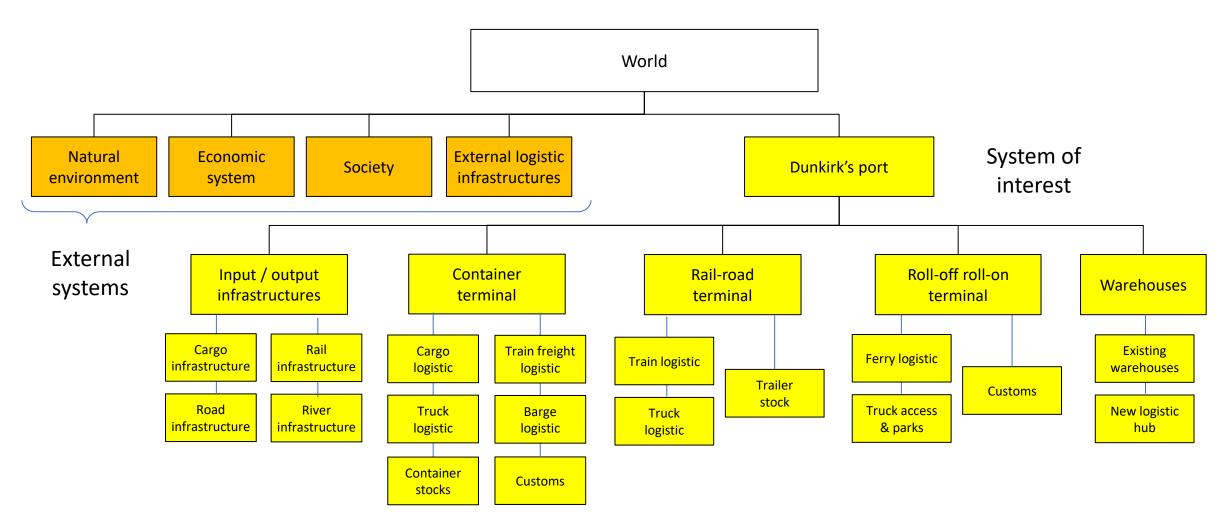
12 Systemic digital twins for mastering complex industrial operations & strategy

Overview of the case study



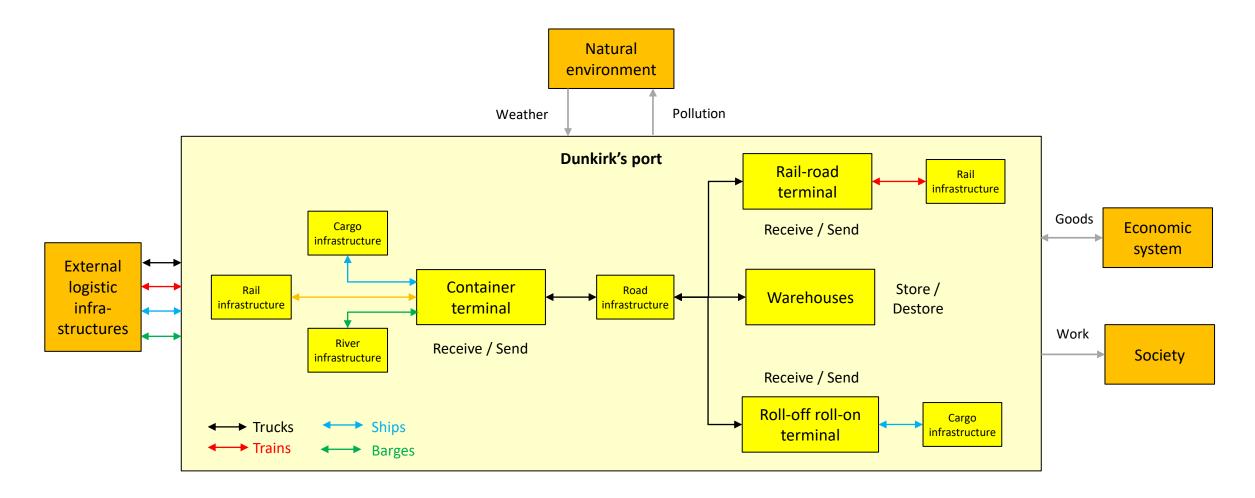
13 | Systemic digital twins for mastering complex industrial operations & strategy

Organization of the case study


Standard process for managing a systemic digital twin

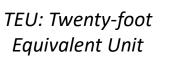
14 Systemic digital twins for mastering complex industrial operations & strategy

Phase 1: design of the systemic digital twin (1/3)


System breakdown of the environment of the system of interest

15 Systemic digital twins for mastering complex industrial operations & strategy

Phase 1: design of the systemic digital twin (2/3)


Main activities & interactions within the environment of the system of interest

16 Systemic digital twins for mastering complex industrial operations & strategy

Phase 1: design of the systemic digital twin (3/3)

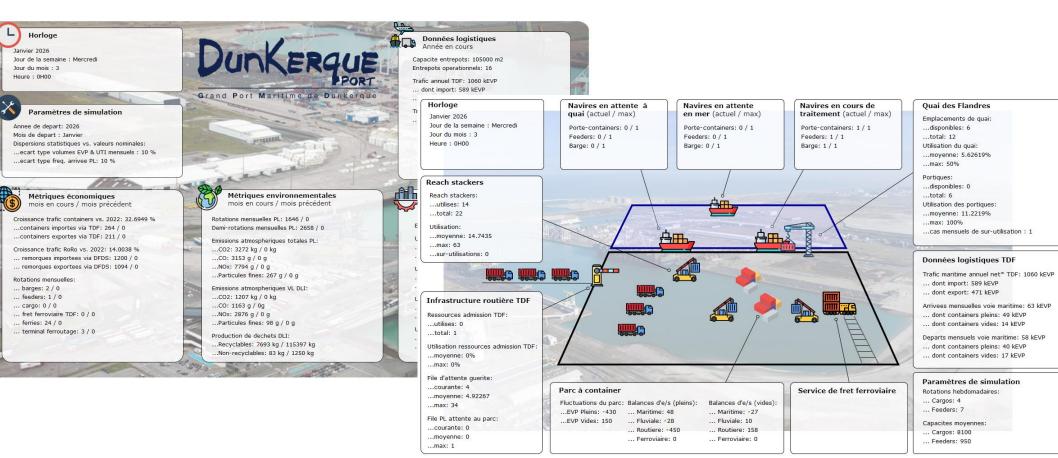
Container Traffic Evolution (2015 - 2035)

Distribution of imported / exported containers 2,5 Forecast data Historic data 18 16 2 Normal 14 approximation: 12 1,5 $\mu = 1.28$ 10 σ = 0.22 1 8 6 0,5 0 2020 2026 2028 2029 2030 2015 2016 2017 2018 2019 2021 2022 2023 2024 2025 2031 2032 2033 2034 2035 2027 [0,83 [0,94 [1,04 [1,14 [1,25 [1,35 [1,46 [1,56 [1,66 [1,77 [0 -[1,87 [1,98 0,83] - 2] 0,94] 1,04] 1,14] 1,25] 1,35] 1,46] 1,56] 1,66] 1,77] 1,87] 1,98] Transhipment traffic (M-TEU) Local traffic (M-TEU)

Example of key business data & associated data analysis for the environment of the system of interest

17 | Systemic digital twins for mastering complex industrial operations & strategy

Phase 2: development of the systemic digital twin (1/2)



🐉 WorldLab Wizard			- 0	\times
ile Edit Project Sigma Window Help	,			
🗅 🥟 🖬 📄 🎤 🕅				
rojects 🗗 🗙	×	Dunkirk.sigma 🗵		
🖊 🎁 Dunkirk	1			_
🗸 📙 Sigma	2	/* 1. DunkirkPortWorld		
Dunkirk.sigma	3	* */		
- Dankinkisigina	4	Sustem Duplei zkDeztWezld		
	5 6	system DunkirkPortWorld system DunkirkPortEnvironment		
	7	system EconomicSystem end		
	8	system ExternalLogisticInfrastructures end		
	9	system NaturalEnvironment end		
	10	system Society end		
	11	end		
	12	system DunkirkPort		
	13	system InputOutputInfrastructures		
	14	system CargoInfrastructure end system RailInfrastructure end		
	15 16	system RiverInfrastructure end		
	17	system RoadInfrastructure end		
	18	end	Specification in $\varSigma^{{\scriptscriptstyle {T\!M}}}$	
	19	system ContainerTerminal	Specification in 2	
	20	system BargeLogistic end	of Dunkirk's port	
	21	system CargoLogistic end	oj Dunkirk s port	
	22	system TrainLogistic end	structure & behavior,	
	23	system TruckLogistic end system ContainerStocks end		
	24 25	system Customs end	supported by	
	25	end		
	27	system RailRoadTerminal	WorldLab [™] systemic	
	28	system TrainLogistic end	Wondedd Systemie	
	29	system TruckLogistic end	intelligence workshop	
	30	system TrailerStocks end	interingence workshop	
	31	end system RollOffRollOnTerminal		
	32 33	system FerryLogistic end		
	34	system TruckAccessAndParks end		
	35	system Customs end		
	36	system WareHouses		
	37	system ExistingWarehouses end		
	38	system NewLogisticHub end		
	39	end		
	40	end		-
	41 42	end		

18 Systemic digital twins for mastering complex industrial operations & strategy

Phase 2: development of the systemic digital twin (2/2)

* les containers transbordés sont comptés une seule fois

Sigma

Examples of dashboards with key performance indicators for Dunkirk's port

CESAMES

19 Systemic digital twins for mastering complex industrial operations & strategy

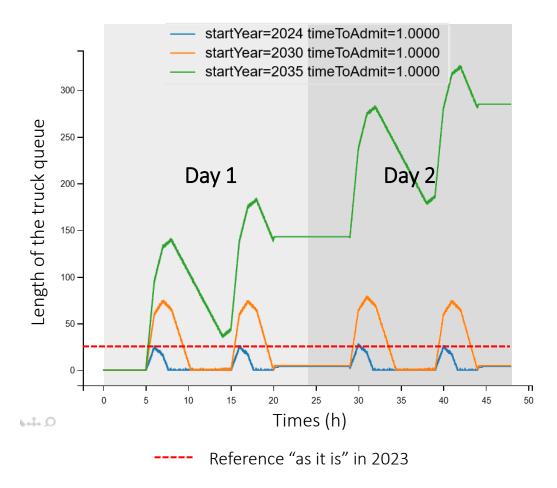
Phase 3: use of the systemic digital twin – Example of container terminal access (1/3)

Business analysis: container terminal access

Context: the admission of trucks to the container terminal is a process carried out manually in two stages (queue & control). This process is suitable today for the current flow of containers transported by road, but will undoubtedly pose capacity problems in the future.

- Anticipate blocking of terminal access
- Control waiting times for truck drivers
- Control / limit the impact on air pollution of the increase in the number of trucks that are serving the container terminal.
- Avoid loss of customers due to poor quality of service
- Avoid forwarding traffic to other ports

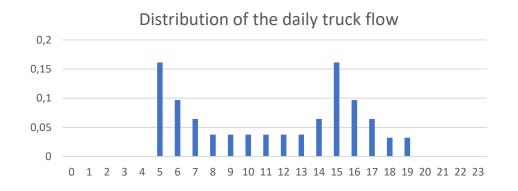
Example of business analysis for Dunkirk's port, supported by WorldLab [™]systemic intelligence workshop



20 Systemic digital twins for mastering complex industrial operations & strategy

Phase 3: use of the systemic digital twin – Example of container terminal access (2/3)

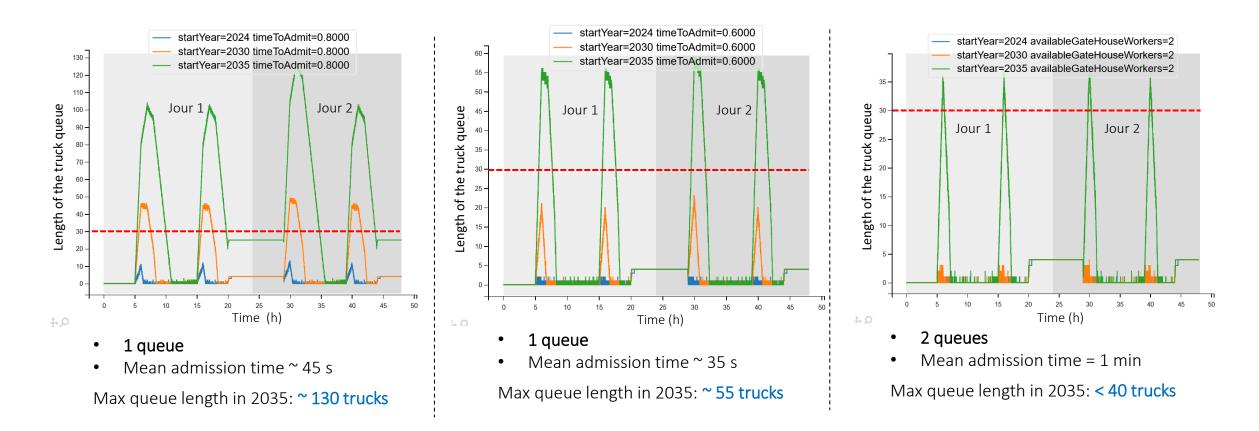
Number of trucks that are waiting at the entrance of the container terminal – simulation of 2 days



Hypothesis:

- Future logistic flows according to Dunkirk's port objectives
- Arrival of trucks following an empirical hourly distribution, as illustrated below
- Each truck transports the equivalent of 2 TEU (Twenty-foot Equivalent Unit)
- 1 single admission queue with 1 min processing time at the most restrictive point

Observation:


Uncontrolled access waiting time starting from 2035

21 | Systemic digital twins for mastering complex industrial operations & strategy

Phase 3: use of the systemic digital twin – Example of container terminal access (3/3)

Reference "as it is" in 2023

To reduce the waiting time, the **most effective solution for 2035** seems to be to **open a second queue**, without having to considerably reduce the processing time, which requires doubling all the resources managing admission to the terminal.

22 Systemic digital twins for mastering complex industrial operations & strategy

Thanks for your questions

23 Systemic digital twins for mastering complex industrial operations & strategy

Contact

Daniel KROB – CEO

email: daniel.krob@systemic-intelligence.net Tel: + 33 (0)6 60 42 34 49 WeChat Id: daniel-krob

Systemic Intelligence Group SAS with share capital of 103,750 € Legal address: 10, rue de Penthièvre – 75008 Paris – France Office address: 69-71, rue de Mirosmesnil – 75008 Paris – France SIREN: 805 084 670

Systemic Intelligence

European Union